nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 02, v.58 40-47
场景化国际中文教学资源知识图谱的构建
基金项目(Foundation): 国家自然科学基金项目(62076038); 北京语言大学国际中文智慧教育工程阶段性成果
邮箱(Email): edxun@blcu.edu.cn;
DOI: 10.13705/j.issn.1671-6841.2024146
摘要:

近些年,为支持国际中文教学,学界构建了大量的知识库,但大多是针对某一具体的资源对象,比如搭配库、例句库等,其孤立性问题较为突出。在万物智能的时代背景下,国际中文教学也面临着数智化转型的问题,其对语言教学资源提出了更高的要求,构建细粒度、各个资源对象相互关联的知识图谱成为必要。在教学过程中特别注重“因材施教”,因此,在构建教学用知识图谱时必须考虑知识的来源和用处,即场景化。利用BCC结构检索工具关联各个资源实体,充分考虑知识的来源以及适用的场景,构建了场景化的国际中文教学知识图谱,并初步进行了国际中文智慧教学的工程实践。

Abstract:

In recent years, numerous knowledge bases were developed by the academic community to support international Chinese language teaching. However, nost of them targeted at specific resources, such as collocation databases or example sentence collections, resulted in isolation. In the era of ubiquitous intelligence, international Chinese education had to face with the challenge of a digital and intelligent paradigm, with higher demands on language teaching resources. The construction of a fine-grained knowledge graph with various resource entities was considered essential. In educational contexts, particular emphasis was placed on "teaching according to the student′s aptitude". The construction of knowledge graphs for teaching should take into account the provenance and application of knowledge, i.e. scenario-based relevance. The BCC structural retrieval tool was employed to link various resource entities, with careful consideration given to the origin of knowledge and its applicable contexts. As a result, a contextualized knowledge graph for international Chinese language teaching was constructed, and preliminary experiments practices were conducted to explore its application in intelligent international Chinese language education.

参考文献

[1] 荀恩东.融课件:国际中文教育资源与技术的集成创新[J].语言教学与研究,2023(5):9-12.XUN E D.Integrated courseware:Innovative integration of international Chinese education resources and technology[J].Language teaching and research,2023(5):9-12.

[2] 王昊奋,漆桂林,陈华钧.知识图谱:方法,实践与应用[M].北京:电子工业出版社,2019.WANG H F,QI G L,CHEN H J.Knowledge graph:methods,practices,and applications [M].Beijing:Publishing House of Electronics Industry,2019.

[3] 黄恒琪,于娟,廖晓,等.知识图谱研究综述[J].计算机系统应用,2019,28(6):1-12.HUANG H Q,YU J,LIAO X,et al.Review on knowledge graphs[J].Computer systems & applications,2019,28(6):1-12.

[4] 陆泉,陈静宇,陈帅朴,等.场景化知识图谱及构建方法[J].情报科学,2024,42(3):1-9,32.LU Q,CHEN J Y,CHEN S P,et al.Scenario-based knowledge graph and construction method[J].Information science,2024,42(3):1-9,32.

[5] 车万翔,窦志成,冯岩松,等.大模型时代的自然语言处理:挑战、机遇与发展[J].中国科学:信息科学,2023,53(9):1645-1687.CHE W X,DOU Z C,FENG Y S,et al.Towards a comprehensive understanding of the impact of large language models on natural language processing:challenges,opportunities and future directions[J].Scientia sinica (informationis),2023,53(9):1645-1687.

[6] P S,L L,W Y,et al.Unifying large language models and knowledge graphs:A Roadmap[EB/OL].(2023-07-14)[2024-06-20].https://arxiv.org/pdf/2306.08302.

[7] YANG L Y,CHEN H Y,LI Z,et al.Give us the facts:enhancing large language models with knowledge graphs for fact-aware language modeling[EB/OL].(2023-06-20)[2024-06-20].https://arxiv.org/pdf/2306.11489v2.

[8] 魏晖,吴应辉,苏向丽,等.“国际中文教育集成创新” 大家谈[J].语言教学与研究,2023(5):1-12.WEI H,WU Y H,SU X L,et al.Discussions on integration innovations in international Chinese language education[J].Language teaching and linguistic studies,2023(5):1-12.

[9] 邢丹,饶高琦,荀恩东,等.基于大规模语料库的介词结构搭配库构建[J].中文信息学报,2020,34(11):1-8.XING D,RAO G Q,XUN E D,et al.Large-scale corpus based preposition structure collocation base[J].Journal of Chinese information processing,2020,34(11):1-8.

[10] 王诚文,饶高琦,荀恩东.基于结构检索的汉语介动搭配知识库构建[J].中文信息学报,2023,37(7):23-31.WANG C W,RAO G Q,XUN E D.Construction of preposition-verb knowledge base based on structure retrieval[J].Journal of Chinese information processing,2023,37(7):23-31.

[11] 邵田,翟世权,饶高琦,等.基于结构树库的状位动词语义分类及搭配库构建[J].中文信息学报,2023,37(6):44-51,66.SHAO T,ZHAI S Q,RAO G Q,et al.Treebank driven semantic classification of adverbial verbs and corresponding collocation repository construction[J].Journal of Chinese information processing,2023,37(6):44-51,66.

[12] 王贵荣,饶高琦,荀恩东.基于大规模语料库的现代汉语动宾搭配知识库构建[J].中文信息学报,2021,35(1):34-42,53.WANG G R,RAO G Q,XUN E D.Construction of verb-object knowledge base from BCC corpus[J].Journal of Chinese information processing,2021,35(1):34-42,53.

[13] 王雨,肖叶,荀恩东,等.服务国际中文教育的词语搭配知识库建设[J].语言文字应用,2022(2):26-37.WANG Y,XIAO Y,XUN E D,et al.The construction of word collocational knowledge base for international Chinese language education[J].Applied linguistics,2022(2):26-37.

[14] 朱奕瑾,饶高琦.基于ChatGPT的生成式共同价值标准例句库建设[J].云南师范大学学报(对外汉语教学与研究版),2023,21(3):71-80.ZHU Y J,RAO G Q.Construction of a generative example sentence corpus of common value standards based on ChatGPT[J].Journal of Yunnan normal university (teaching & studying Chinese as a foreign language edition),2023,21(3):71-80.

[15] 荀恩东,饶高琦,肖晓悦,等.大数据背景下BCC语料库的研制[J].语料库语言学,2016,3(1):93-109,118.XUN E D,RAO G Q,XIAO X Y,et al.The construction of the BCC corpus in the age of big data[J].Corpus linguistics,2016,3(1):93-109,118.

[16] 卢露,矫红岩,李梦,等.基于篇章的汉语句法结构树库[J].自动化学报,2022,48(12):2911-2921.LU L,JIAO H Y,LI M,et al.A discourse-based Chinese chunkbank[J].Acta automatica sinica,2022,48(12):2911-2921.

[17] 荀恩东.自然语言结构计——BCC语料库[M].北京:人民邮电出版社,2023.XUN E D.Natural language structure computing—BCC Corpus [M].Beijing:Posts & Telecom Press,2023.

[18] 蔡建永.基于语料库索引的对外汉语教学课前例句设计[C]//第七届中文电化教学国际研讨会.北京:清华大学出版社,2010:431-436.CAI J Y.Design of pre-lesson example sentences for teaching Chinese as a foreign language based on corpus indexing[C]//The 7th International Symposium on Technology-Enhanced Chinese Language Education.Beijing:Tsinghua University Press,2010:431-436.

[19] 单天罡.基于语料库的对外汉语词汇例句收集研究[J].现代语文,2013(9):104-106.SHAN T G.A study on the collection of example sentences for Chinese vocabulary in Chinese as a foreign language based on a corpus [J].Modern Chinese,2013(9):104-106.

基本信息:

DOI:10.13705/j.issn.1671-6841.2024146

中图分类号:TP391.1;H195.3

引用信息:

[1]杨浩,辛晶,朱珊仪,等.场景化国际中文教学资源知识图谱的构建[J].郑州大学学报(理学版),2026,58(02):40-47.DOI:10.13705/j.issn.1671-6841.2024146.

基金信息:

国家自然科学基金项目(62076038); 北京语言大学国际中文智慧教育工程阶段性成果

检 索 高级检索