2,674 | 194 | 674 |
下载次数 | 被引频次 | 阅读次数 |
极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(particle swarm optimization,PSO)选择最优的输入权值矩阵和隐含层偏差,从而计算出输出权值矩阵.一维Sinc函数拟合实验表明,相比于ELM算法和传统神经网络算法,粒子群极限学习机算法依靠较少的隐含层节点能够获得较高精度.
Abstract:Extreme learning machine(ELM) was a new type of feedforward neural network.Compared with traditional single hidden layer feedforward neural networks,ELM possessed higher training speed and smaller error.Due to random input weights and hidden biases,ELM might need numerous hidden neurons to achieve a reasonable accuracy.A new ELM learning algorithm,which was optimized by the particle swarm optimization(PSO),was proposed.PSO algorithm was used to select the input weights and bias of hidden layer,then the output weights could be calculated.To test the validity of proposed method,two simulation experiments were drawn on the approximation curves of the Sinc function.Experimental results showed that the proposed algorithm achieved better performance with less hidden neurons than other similar methods.
[1]刘天舒.BP神经网络的改进研究及应用[D].东北农业大学,2011.
[2]Huang Guangbin,Zhu Qinyu,Siew Cheekheong.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501.
[3]Deng W,Chen L.Color imagewatermarking using regularized extreme learning machine[J].Neural Network World,2010,20(3):317-330.
[4]Zong Weiwei,Huang Guangbin.Face recognition based on extreme learning machine[J].Neurocomputing,2011,74(16):2541-2551.
[5]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,1995:1942-1948.
[6]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on MicroMachine and Human Science.Nagoya,1995:39-43.
[7]冯冬青,杨书显.氧乐果合成过程的PSO回归BP网络建模方法[J].郑州大学学报:理学版,2011,43(3):113-117.
[8]严晓明,郑之.基于混合仿生算法的SVM参数优化[J].广西师范大学学报:自然科学版,2011,29(2):115-118.
[9]徐海龙,王晓丹,廖勇,等.一种基于PSO的RBF-SVM模型优化新方法[J].控制与决策,2010,25(3):368-377.
[10]Chih Chung Chang,Chih Jen Lin.LIBSVM:a library for support vector machines[EB/OL].[2012-11-16]http://www.csie.ntu.edu.tw/~cjlin/libsvm.
基本信息:
DOI:
中图分类号:TP183
引用信息:
[1]王杰,毕浩洋.一种基于粒子群优化的极限学习机[J],2013,45(01):100-104.
基金信息:
国家自然科学基金资助项目,编号60905039/F030507