3,918 | 90 | 679 |
下载次数 | 被引频次 | 阅读次数 |
图像拼接技术是图像处理技术中的研究热点.对图像拼接技术进行分析与总结,基于图像拼接技术的发展历史与现状,介绍了图像拼接技术的背景与应用;概括了图像拼接的基本概念与拼接流程,主要研究了图像拼接中的图像配准技术,对图像配准中的经典算法进行分类概述,并研究了各算法的基本思想与优缺点,对其中的尺度不变特征变换算法进行了重点介绍,概述了图像融合的基本类别,详细介绍了图像融合中最常用的加权平均法,最后指出了图像拼接中的当前问题与发展趋势.
Abstract:Image mosaicing was analyzed and summarized comprehensively. Based on the development of this technology the background and applications were described generally. The definition and steps of image mosaicing were indicated initially,and the algorithms of image registration were examined by classifying them into several groups. For each algorithm, especially the scale-invariant feature transform( SIFT),the basic theory and characteristics were demonstrated in detail. In the last part,the classifications of image fusion were illustrated and methods of this stage,specially the weighted average,were explained briefly. In addition,the challenges and tendencies of image mosaicing were also pointed out.
[1] GUPTA V,BUSTAMANTE M,FREDRIKSSON A,et al. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis[J]. Magnetic resonance in medicine,2018,79(1):554-560.
[2]詹斌.遥感图像拼接系统[J].计算机系统应用,2014,23(5):31-36.
[3]杨迪航.基于多全景相机拼接的虚拟现实和实景交互系统[D].杭州:浙江大学,2017.
[4]朱云芳.基于图像拼接的视频编辑[D].杭州:浙江大学,2006.
[5] VIGUIER R,LIN C C. Automatic video content summarization using geospatial mosaics of aerial imagery[C]∥IEEE International Symposium on Multimedia. Miami,2015:249-253.
[6] SAUR G,KRUEGER W. Change detection in UAV video mosaics combining a feature based approach and extended image differencing[J]. The international archives of the photogrammetry,remote sensing and spatial information sciences,2016,41(B7):557-562.
[7] TOYAMA F,SHOJI K. Image mosaicing from a set of images without configuration information[C]∥The 17th International Conference on Pattern Recognition. Cambridge,2004:899-902.
[8] REDDY B S. An FFT-based technique for translation,rotation,and scale-invariant image registration[J]. IEEE transaction on image processing,1996,5(8):1266-1271.
[9]邹进贵,杨义辉,李琴,等.局部相位相关法在密集匹配中的应用及精度分析[J].测绘通报,2018,1(5):25-28.
[10] RENUKA DEVI S M. Image mosaicing using phase correlation and feature based approach:a review[J]. International journal of engineering research,2016,4(1):270-275.
[11] HARRIS C. A combined corner and edge detector[C]∥The Fourth Alvey Vision Conference. Manchester,1988:147-151.
[12] LOWE D G. Object recognition from local scale-invariant features[C]∥The Seventh IEEE International Conference on Computer Vision. Kerkyra,1999:1150-1157.
[13] LOWE D G. Distinctive image features from scale-invariant key-points[J]. International journal of computer vision,2004,60(2):91-110.
[14] ASCHENBRENNER K P,GUTHIER C V. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT[J]. Zeitschrift für medizinische physik,2017,27(3):243-254.
[15]贾迪,杨宁华,孙劲光.像对匹配的模板选择与匹配[J].中国图像图形学报,2017,22(11):1512-1520.
[16] MOSTAFAVI H,SLOUTSKY A,JEUNG A. Detection and localization of radiotherapy targets by template matching[C]∥The34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego,2012:6023-6027.
[17] ZHAO T S. Small target detection and recognition based on template matching[C]∥The 4th International Conference on Machinery,Materials and Information Technology Applications. Xi'an,2016:964-968.
[18] COOLEY J W,TUKEY J W. An algorithm for the machine calculation of complex fourier series[J]. Mathematics of computation,1965,19(90):297-301.
[19] CASTRO E D,MORANDI C. Registration of translated and rotated images using finite fourier transforms[J]. IEEE transactions on pattern analysis and machine intelligence,1987,9(5):700-703.
[20]邵向鑫.数字图像拼接核心算法研究[D].长春:吉林大学,2010.
[21] XU J,HONG Y X,XIN S X,et al. Medical image mosaic technology based on image phase correlation[C]∥The 4th International Conference on Digital Home. Guangzhou,2012:274-277.
[22] WANG W,CHEN H J,LI J P,et al. A registration method of fundus images based on edge detection and phase-correlation[C]∥The 1st International Conference on Innovative Computing,Information and Control. Beijing,2006:572-576.
[23] FISCHLER M A,BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Graphics and image processing,1981,24(6):381-395.
[24] ROSTEN E,DRUMMOND T. Machine learning for high-speed corner detection[J]. European conference on computer vision,2006,3951(1):430-443.
[25] ROSTEN E,PORTER R,DRUMMOND T. Faster and better:a machine learning approach to corner detection[J]. Computer science,2008,32(1):105-119.
[26] CHEN X,LIU L,SONG J X,et al. Corner detection and matching for infrared image based on double ring mask and adaptive SUSAN algorithm[J]. Optical and quantum electronics,2018,50(4):193-202.
[27] SMITH S M,BRADY J M. SUSAN—a new approach to low level image processing[J]. International journal of computer vision,1997,23(2):45-78.
[28] WANG Z C,LI R,SHAO Z H,et al. Adaptive Harris corner detection algorithm based on iterative threshold[J]. Modern physics letters B,2017,31(15):1750181.
[29] WU T,ZHANG Z L,ZHAO J Y,et al. An adaptive FAST corner detector based on high contrast grid image[C]∥The 2nd International Conference on Mechatronics Engineering and Information Technology. Dalian,2017:591-597.
[30] LI H L,GUO L H,CHEN T,et al. The corner detector of the teeth image based on the improved SUSAN algorithm[C]∥The3rd International Conference on Biomedical Engineering and Informatics. Yantai,2010:609-612.
[31]曾俊,李德华.彩色图像SUSAN边缘检测方法[J].计算机工程与应用,2011,47(15):194-196.
[32]吕冀,汪渤,高洪民.快速SUSAN-Laplace角点算法[J].光学技术,2008,34(6):873-876.
[33] MANORANJITHAM R,DEEPA P. Efficient invariant interest point detector using Bilateral-Harris corner detector for object recognition application[J]. Multimedia tools and applications,2018,77(8):9365-9378.
[34]高华.Log-Gabor梯度方向下的角点检测[J].中国图像图形学报,2017,22(6):797-806.
[35] LI H,MITRA S K. A contour-based approach to multi-sensor image registration[J]. IEEE transactions on image processing,1995,4(3):320-334.
[36]靳秋霞.基于Freeman链码的二维曲线匹配[J].计算机应用,2015,35(S1):247-251.
[37] HU M K. Visual pattern recognition by moment invariants[J]. Information theory,1962,8(2):179-187.
[38] BAY H,ESS A,TUYTELAARS T,et al. Speeded-up robust features(SURF)[J]. Computer vision and image understanding,2008,110(3):346-359.
[39]巨刚,袁亮,刘小月,等.基于改进SURF算法的移动目标实时图像配准方法研究[J].通信学报,2017,38(1):177-186.
[40]朱炼,孙凤,夏芳莉,等.图像融合研究综述[J].传感器与微系统,2014,33(2):14-18.
[41]徐书欣,葛洪央.形态人波和对比敏感度函数结合的图像融合算法[J].信阳师范学院学报(自然科学版),2017,30(3):449-453.
[42] DOGRA A,GOYAL B,AGRAWAL S. Osseous and digital subtraction angiography image fusion via various enhancement schemes and Laplacian pyramid transformations[J]. Future generation computer systems,2018,82(1):149-157.
[43] LI H,MANJUNATH B S,MITRA S K. Multi-sensor image fusion using the wavelet transform[J]. Graphical models and image processing,1995,57(3):235-245.
[44]袁梦笛,顾国华,钱惟贤,等.红外搜索跟踪系统中实时图像配准的研究和实现[J].红外技术,2012,34(9):497-502.
[45] ZHANG N,HOU J,WANG R W. Harris-SIFT algorithm optimization and its applications on nonwovens[C]∥Advances in Materials,Machinery,Electronics. Wuhan,2017:123-135.
[46] AGRAWAL V,BHEDA D. Optimized image mosaicing with moment invariants and SIFT features[J]. Oriental journal of computer science and technology,2017,10(1):66-75.
[47]张震,邵星星.一种SIFT虹膜匹配算法[J].郑州大学学报(理学版),2017,49(3):14-19.
[48]郭新,徐明,张众.基于谱聚类的边缘检测算法[J].郑州大学学报(理学版),2018,50(3):83-87.
[49] CHEN S F,QIN J,XIE Y M,et al. CUDA-based acceleration and algorithm refinement for volume image[C]∥International Conference on Future Bio-medical Information Engineering. Sanya,2009:544-547.
[50] OKUMURA K,RAUT S,GU Q Y,et al. Real-time feature-based video mosaicing at 500 fps[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo,2013:2665-2670.
[51] SUN Y Y,MOELKER A,NIESSEN W J,et al. Towards robust CT-ultrasound registration using deep learning methods[C]∥Understanding and Interpreting Machine Learning in Medical Image Computing Applications. Granada,2018:43-51.
[52] VOS B D,BERENDSEN F F,VIERGEVER M A,et al. End-to-end unsupervised deformable image registration with a convolutional neural network[C]∥Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Quebec,2017:204-212.
[53] GIERING M,VENUGOPALAN V,REDDY K. Multi-modal sensor registration for vehicle perception via deep neural networks[C]∥IEEE High-performance Extreme Computing Conference. Waltham,2015:1-6.
基本信息:
DOI:10.13705/j.issn.1671-6841.2019004
中图分类号:TP391.41
引用信息:
[1]裴红星,刘金达,葛佳隆等.图像拼接技术综述[J],2019,51(04):1-10+29.DOI:10.13705/j.issn.1671-6841.2019004.
基金信息:
国家自然科学基金项目(81171410)