nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 03, v.55 57-64
模拟人工蜂群的高维数据特征选择算法研究
基金项目(Foundation): 国家自然科学基金项目(31870532);; 湖南省自然科学基金项目(2021JJ31163);; 湖南省教育科学“十三五”规划基金项目(XJK20BGD048)
邮箱(Email):
DOI: 10.13705/j.issn.1671-6841.2021539
摘要:

针对高维数据集结构复杂且冗余度高的问题,提出一种新型二进制人工蜂群算法进行特征选择。该算法在雇佣蜂蜜源搜索阶段应用差分思想,增加多项式差分变异算子,实现蜜源更新环节的多维性、高效性;在跟随蜂阶段和侦察蜂阶段分别引入交叉算子和最优保存策略,进一步打破局部最优,有效提升了人工蜂群算法的收敛效果;对蜜源的二进制初始化处理,使得算法在特征选择过程中取得了良好表现。在4个Benchmark测试函数上进行实验,结果表明,新算法的寻优精度和收敛速度优于其他4种经典搜索算法。同时,选取7个常用高维数据集进行特征选择,并与7种经典降维算法进行对比,发现新算法的特征约简程度普遍高于88%,并且随着数据集维度的增高,新算法的降维程度和分类精度优于其他7种降维算法。

Abstract:

Aiming at the problems of complex structure and high redundancy of high-dimensional data sets, a new binary artificial bee colony algorithm was proposed for feature selection.In the algorithm, difference idea was applied and polynomial difference mutation operator was added to the stage of hired honey source search, so as to realize multidimensionality and high efficiency of honey source update. At the stage of onlooker bee and scout bee, crossover operator and optimal preservation strategy were introduced respectively to further break local optimality, and effectively improved convergence effect of artificial bee colony algorithm. Honey source was initialized by binary, which made the algorithm perform well in the process of feature selection. Experiments on four Benchmark test functions showed that the optimization accuracy and convergence speed of the new algorithm were better than four classical search algorithms. At the same time, seven commonly used high-dimensional data sets were selected for feature selection and the results were compared with seven classical dimensionality reduction algorithms. It was found that the feature reduction degree of the new algorithm was generally above 88%. With the higher dimension of the data set, the dimensionality reduction degree and classification accuracy of the new algorithm were better than those of the other seven dimensionality reduction algorithms.

参考文献

[1] XUE B,ZHANG M J,BROWNE W N,et al.A survey on evolutionary computation approaches to feature selection[J].IEEE transactions on evolutionary computation,2015,20(4):606-626.

[2] LAN S W,FAN W J,YANG S L,et al.A survey on the applications of variable neighborhood search algorithm in healthcare management[J].Annals of mathematics and artificial intelligence,2021,89(8/9):741-775.

[3] 张震,魏鹏,李玉峰,等.改进粒子群联合禁忌搜索的特征选择算法[J].通信学报,2018,39(12):60-68.ZHANG Z,WEI P,LI Y F,et al.Feature selection algorithm based on improved particle swarm joint taboo search[J].Journal on communications,2018,39(12):60-68.

[4] 刘玉杰,万兵,苏析超,等.基于IABC算法的舰载机着舰调度[J].控制与决策,2022,37(7):1810-1818.LIU Y J,WAN B,SU X C,et al.Aircraft carrier landing scheduling based on IABC algorithm [J].Control and decision,2022,37(7):1810-1818.

[5] 初蓓,李占山,张梦林,等.基于森林优化特征选择算法的改进研究[J].软件学报,2018,29(9):2547-2558.CHU B,LI Z S,ZHANG M L,et al.Research on improvements of feature selection using forest optimization algorithm[J].Journal of software,2018,29(9):2547-2558.

[6] 陈倩茹,李雅丽,许科全,等.自调优自适应遗传算法的WKNN特征选择方法[J].计算机工程与应用,2021,57(20):164-171.CHEN Q R,LI Y L,XU K Q,et al.WKNN feature selection method based on self-tuning adaptive genetic algorithm[J].Computer engineering and applications,2021,57(20):164-171.

[7] RAO H D,SHI X Z,RODRIGUE A K,et al.Feature selection based on artificial bee colony and gradient boosting decision tree[J].Applied soft computing,2019,74:634-642.

[8] HANCER E,XUE B,ZHANG M J,et al.Pareto front feature selection based on artificial bee colony optimization[J].Information sciences,2018,422:462-479.

[9] 李光华,李俊清,张亮,等.一种融合蚁群算法和随机森林的特征选择方法[J].计算机科学,2019,46(S2):212-215.LI G H,LI J Q,ZHANG L,et al.Feature selection method based on ant colony optimization and random forest[J].Computer science,2019,46(S2):212-215.

[10] ZORARPACI E,?ZEL S A.A hybrid approach of differential evolution and artificial bee colony for feature selection[J].Expert systems with applications,2016,62:91-103.

[11] 封硕,刘琨.融合差分进化思想的自适应人工蜂群算法[J].郑州大学学报(理学版),2021,53(3):72-78.FENG S,LIU K.Adaptive artificial bee colony algorithm based on differential evolution[J].Journal of Zhengzhou university (natural science edition),2021,53(3):72-78.

[12] KARABOGA D.An idea based on honey bee swarm for numerical optimization[R].Kayseri:Erciyes University,2005.

[13] STORN R,PRICE K.Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of global optimization,1997,11(4):341-359.

[14] 曲志坚,张先伟,曹雁锋,等.基于自适应机制的遗传算法研究[J].计算机应用研究,2015,32(11):3222-3225,3229.QU Z J,ZHANG X W,CAO Y F,et al.Research on genetic algorithm based on adaptive mechanism[J].Application research of computers,2015,32(11):3222-3225,3229.

[15] 毕惟红,任红民,吴庆标.一种新的遗传算法最优保存策略[J].浙江大学学报(理学版),2006,33(1):32-35.BI W H,REN H M,WU Q B.A new elitist strategy in genetic algorithms[J].Journal of Zhejiang university (science edition),2006,33(1):32-35.

[16] KASHAN M H,NAHAVANDI N,KASHAN A H.DisABC:a new artificial bee colony algorithm for binary optimization[J].Applied soft computing,2012,12(1):342-352.

[17] AKAY B,KARABOGA D.A modified artificial bee colony algorithm for real-parameter optimization[J].Information sciences,2012,192:120-142.

[18] HANCER E,XUE B,KARABOGA D,et al.A binary ABC algorithm based on advanced similarity scheme for feature selection[J].Applied soft computing,2015,36:334-348.

基本信息:

DOI:10.13705/j.issn.1671-6841.2021539

中图分类号:TP18

引用信息:

[1]刘拥民,王靖枫,黄浩等.模拟人工蜂群的高维数据特征选择算法研究[J],2023,55(03):57-64.DOI:10.13705/j.issn.1671-6841.2021539.

基金信息:

国家自然科学基金项目(31870532);; 湖南省自然科学基金项目(2021JJ31163);; 湖南省教育科学“十三五”规划基金项目(XJK20BGD048)

检 索 高级检索