238 | 1 | 59 |
下载次数 | 被引频次 | 阅读次数 |
为了实现虚假新闻的早期检测,提出一种基于预训练表示和宽度学习的虚假新闻早期检测方法。首先,将新闻文本输入大规模预训练语言模型RoBERTa中,得到对应新闻文本的上下文语义表示。其次,将得到的新闻文本的上下文语义表示输入宽度学习的特征节点和增强节点中,利用宽度学习的特征节点和增强节点进一步提取新闻文本的线性和非线性特征并构造分类器,从而预测新闻的真实性。最后,在3个真实数据集上进行了对比实验,结果表明,所提方法可以在4 h内检测出虚假新闻,准确率超过80%,优于基线方法。
Abstract:In order to achieve early detection of fake news, a method based on pre-training representation and broad learning was proposed. Firstly, the news text was input into the RoBERTa large-scale pre-training language model to obtain the contextual semantic representation of the corresponding news text. Secondly, the obtained contextual semantic representation was fed into the feature nodes and enhanced nodes of broad learning. By leveraging these broad learning nodes, both linear and non-linear features were extracted from the news text, enabling the construction of a classifier for predicting the authenticity of the news. Finally, comparative experiments were conducted on three real datasets, and the results demonstrated that the proposed method was capable of detecting fake news within 4 h with an accuracy rate exceeding 80%, surpassing the performance of the baseline method.
[1] 冀源蕊,康海燕,方铭浩.基于Attention与Bi-LSTM的谣言识别方法[J].郑州大学学报(理学版),2023,55(4):16-22.JI Y R,KANG H Y,FANG M H.Rumor recognition method based on Attention and Bi-LSTM[J].Journal of Zhengzhou university (natural science edition),2023,55(4):16-22.
[2] CASTILLO C,MENDOZA M,POBLETE B.Information credibility on Twitter[C]//Proceedings of the 20th International Conference on World Wide Web.New York:ACM Press,2011:675-684.
[3] KWON S,CHA M,JUNG K,et al.Prominent features of rumor propagation in online social media[C]//Proceedings of the IEEE 13th International Conference on Data Mining.Piscataway:IEEE Press,2014:1103-1108.
[4] FENG S,BANERJEE R,CHOI Y.Syntactic stylometry for deception detection[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics,2012:171-175.
[5] MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks[C]//International Joint Conference on Artificial Intelligence.Amsterdam:Elsevier Press,2016:56-66.
[6] MA J,GAO W,WONG K F.Detect rumor and stance jointly by neural multi-task learning[C]//Proceedings of the Web Conference.New York:ACM Press,2018:585-593.
[7] BIAN T A,XIAO X,XU T Y,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2020:549-556.
[8] DEVLIN J,CHANG M W,LEE K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:Association for Computational Linguistics,2019:4171-4186.
[9] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM Press,2017:6000-6010.
[10] PHILIP C C L,LIU Z L.Broad learning system:an effective and efficient incremental learning system without the need for deep architecture[J].IEEE transactions on neural networks and learning systems,2018,29(1):10-24.
[11] CHU Y H,LIN H F,YANG L A,et al.Hyperspectral image classification with discriminative manifold broad learning system[J].Neurocomputing,2021,442:236-248.
[12] JIN J W,LI Y T,YANG T J,et al.Discriminative group-sparsity constrained broad learning system for visual recognition[J].Information sciences,2021,576:800-818.
[13] MA J,GAO W,WONG K F.Detect rumors in microblog posts using propagation structure via kernel learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics,2017:708-717.
[14] LIU Y,WU Y F.Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2018:354-361.
[15] CUI Y M,CHE W X,LIU T,et al.Revisiting pre-trained models for Chinese natural language processing[C]//Findings of the Association for Computational Linguistics:EMNLP 2020.Stroudsburg:Association for Computational Linguistics,2020:657-668.
[16] ZHAO Z,RESNICK P,MEI Q Z.Enquiring minds:early detection of rumors in social media from enquiry posts[C]//Proceedings of the 24th International Conference on World Wide Web.New York:ACM Press,2015:1395-1405.
[17] KWON S,CHA M,JUNG K.Rumor detection over varying time windows[J].PLoS one,2017,12(1):e0168344.
基本信息:
DOI:10.13705/j.issn.1671-6841.2023129
中图分类号:G210.7;TP391.1
引用信息:
[1]胡舜邦,王琳,刘伍颖.基于预训练表示和宽度学习的虚假新闻早期检测[J].郑州大学学报(理学版),2025,57(02):31-36.DOI:10.13705/j.issn.1671-6841.2023129.
基金信息:
教育部人文社会科学研究规划基金项目(20YJAZH069);教育部人文社会科学研究青年基金项目(20YJC740062); 山东省研究生教育教学改革研究项目(SDYJG21185); 山东省本科教学改革研究重点项目(Z2021323); 上海市哲学社会科学“十三五”规划课题(2019BYY028)