667 | 8 | 126 |
下载次数 | 被引频次 | 阅读次数 |
蛇优化(snake optimizer, SO)算法存在前期收敛速度慢和易陷入局部最优的问题,为此提出一种融合反向学习机制与差分进化策略的改进蛇优化(improved snake optimizer, ISO)算法。反向学习机制可提高种群质量,以提升算法寻优速度;差分进化策略有助于算法精准寻优,降低算法陷入局部最优的几率。在10个基准测试函数上的实验结果表明,ISO算法拥有更高的寻优精度和更快的收敛速率。将其应用于支持向量机(support vector machine, SVM)的参数选取中,进一步验证了ISO算法的有效性。
Abstract:To address the problem of slow convergence speed in the early stage and local optimization, an improved snake optimizer(ISO) algorithm based on reverse learning mechanism and differential evolution strategy was proposed. The reverse learning mechanism could improve the population quality to enhance optimization speed.The differential evolution strategy could help search accurately and reduce the probability of falling into local optimal value.The experimental results of ten benchmark functions showed that ISO had higher optimization accuracy and faster convergence rate. It was later applied to the parameter selection of the support vector machine(SVM) to demonstrate the effectiveness of the proposed ISO algorithm.
[1] HASHIM F A,HUSSIEN A G.Snake optimizer:a novel meta-heuristic optimization algorithm[J].Knowledge-based systems,2022,242:108320.
[2] CHEN R,ZHANG Q W,PENG R T,et al.Hybrid identification method of material parameters based on genetic algorithm and improved homotopy algorithm[J].Materials today communications,2022,33:104380.
[3] OZCALICI M,BUMIN M T.Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural networks for an improved trading:the case of Borsa Istanbul[J].Expert systems with applications,2022,208:118120.
[4] SONG Y J,ZHAO G Y,ZHANG B,et al.An enhanced distributed differential evolution algorithm for portfolio optimization problems[J].Engineering applications of artificial intelligence,2023,121:106004.
[5] OPARA K R,ARABAS J.Differential Evolution:a survey of theoretical analyses[J].Swarm and evolutionary computation,2019,44:546-558.
[6] 吴宇翔,王晓峰,于卓,等.一种求解Max-SAT问题的快速模拟退火算法[J].郑州大学学报(理学版),2023,55(4):46-53.WU Y X,WANG X F,YU Z,et al.A fast simulated annealing algorithm for solving max-SAT problem[J].Journal of Zhengzhou university (natural science edition),2023,55(4):46-53.
[7] 刘拥民,王靖枫,黄浩,等.模拟人工蜂群的高维数据特征选择算法研究[J].郑州大学学报(理学版),2023,55(3):57-64.LIU Y M,WANG J F,HUANG H,et al.Research on high-dimensional data feature selection algorithm simulating artificial bee colony[J].Journal of Zhengzhou university (natural science edition),2023,55(3):57-64.
[8] 封硕,刘琨.融合差分进化思想的自适应人工蜂群算法[J].郑州大学学报(理学版),2021,53(3):72-78.FENG S,LIU K.Adaptive artificial bee colony algorithm based on differential evolution[J].Journal of Zhengzhou university (natural science edition),2021,53(3):72-78.
[9] ABBASZADEH M,SOLTANI-MOHAMMADI S,AHMED A N.Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method[J].Computers & geosciences,2022,165:105140.
[10] CAI B,ZHU X P,QIN Y X.Parameters optimization of hybrid strategy recommendation based on particle swarm algorithm[J].Expert systems with applications,2021,168:114388.
[11] WANG E L,XIA J Y,LI J,et al.Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm[J].Energy,2022,261:125146.
[12] LI S,XU K,XUE G Z,et al.Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression[J].Fuel,2022,324:124670.
[13] 李天翼,陈红梅.一种用于解决特征选择问题的新型混合演化算法[J].郑州大学学报(理学版),2021,53(2):41-49.LI T Y,CHEN H M.A new hybrid evolutionary algorithm for solving feature selection problem[J].Journal of Zhengzhou university (natural science edition),2021,53(2):41-49.
[14] CHAKRABORTY S,KUMAR SAHA A,SHARMA S,et al.A novel enhanced whale optimization algorithm for global optimization[J].Computers & industrial engineering,2021,153:107086.
[15] ELAZIZ M A,MIRJALILI S.A hyper-heuristic for improving the initial population of whale optimization algorithm[J].Knowledge-based systems,2019,172:42-63.
[16] DEHGHANI M,HUBALOVSKY S,TROJOVSKY P.Northern goshawk optimization:a new swarm-based algorithm for solving optimization problems[J].IEEE access,2021,9:162059-162080.
[17] HU G,YANG R,ABBAS M,et al.BEESO:multi-strategy boosted snake-inspired optimizer for engineering applications[J].Journal of bionic engineering,2023,20(4):1791-1827.
[18] ABU KHURMA R,ALBASHISH D,BRAIK M,et al.An augmented Snake Optimizer for diseases and COVID-19 diagnosis[J].Biomedical signal processing and control,2023,84:104718.
[19] TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling,Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce.Piscataway:IEEE Press,2006:695-701.
基本信息:
DOI:10.13705/j.issn.1671-6841.2023113
中图分类号:TP18
引用信息:
[1]占宏祥,汪廷华,张昕.一种融合反向学习机制与差分进化策略的蛇优化算法[J].郑州大学学报(理学版),2024,56(06):25-31.DOI:10.13705/j.issn.1671-6841.2023113.
基金信息:
国家自然科学基金项目(61966002);; 江西省学位与研究生教育教学改革研究项目(JXYJG-2022-172)