一类四阶拟线性发展方程的整体解GLOBAL SOLUTIONS FOR A CLASS OF QUASILINEAR EVOLUTION EQUATIONS OF THE FOURTH ORDER
赵占才,杨志坚
摘要(Abstract):
本文研究了出自一维粘弹性力学的一类四阶拟线性发展方程的第一初边值问题、周期边值问题和初值问题。用Galerkin方法证明了在大初值条件下整体广义解和整体古典解的存在性、唯一性和正则性。
关键词(KeyWords): 拟线性发展方程;Galerkin方法;初值问题
基金项目(Foundation):
作者(Author): 赵占才,杨志坚
参考文献(References):
- [1] Renardy M. Mathematical Analysis of Viscoelastic Flows. Ann. Rev. Fluid Mech, 1989, 21: 21~36
- [2] Hrusa W J. Global Existence and Asymptotic Stability for a Semilinear Hyperbolic Volterra Equation with Large Initial Data. SIAM J. Math. Anal., 1985, 16(1) : 110~134
- [3] Nohel J A, Eogers R C, Tgavaras A E. Hyperbolic Convervation Laws in Viscoelasticity. Volterra Integrodifferential Equations in Banach Spaces and Applications. 1987, 320~338; Pitman Res., Notes Math. Ser., 190; Longman Sci, Tech., Harlow, 1989
- [4] 周毓麟,符鸿源.广义Sine-Gordon型非线性高阶双曲方程组.数学学报,1983,26(2) :234~249