基于DWT-CNN-LSTM的超短期光伏发电功率预测Super-Short-Term Photovoltaic Power Forecasting Based on DWT-CNN-LSTM
刘旭丽,莫毓昌,吴哲,严珂
摘要(Abstract):
太阳能是未来清洁能源的关键,由于各种气象因素的影响,光伏发电通常不稳定。准确预测光伏发电功率的方法已成为解决光伏发电规划和建模问题的重要工具,可以减轻电力系统的负面影响,提高系统的稳定性。提出了一种基于离散小波变换(discrete wavelet transform, DWT)、卷积神经网络(convolutional neural network, CNN)和长短期记忆神经网络(long short-term memory, LSTM)的新型域融合深度模型(DWT-CNN-LSTM),以准确地完成预测。提出的模型具有两个通道:原始通道和DWT通道。CNN分别从原始通道和DWT通道提取时域和频域特征,LSTM则用以挖掘具有长期依赖性的特征,从而形成具有长期依赖性的时域和频域的融合特征,可用于功率预测。
关键词(KeyWords): 光伏发电;超短期预测;小波分解;卷积神经网络;长短期记忆神经网络
基金项目(Foundation): 国家自然科学基金项目(61972165);; 数据科学福建省高校科技创新团队项目(MJK-2018-49);; 大数据分析与安全泉州市高层次人才团队项目(2017ZT012);; 福建省科技重大专项资助项目(2020HZ02014)
作者(Author): 刘旭丽,莫毓昌,吴哲,严珂
DOI: 10.13705/j.issn.1671-6841.2021292
参考文献(References):
- [1] WANG H Z,YI H Y,PENG J C,et al.Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J].Energy conversion and management,2017,153:409-422.
- [2] LI,WANG,ZHANG,et al.Recurrent neural networks based photovoltaic power forecasting approach[J].Energies,2019,12(13):2538.
- [3] ANTONANZAS J,OSORIO N,ESCOBAR R,et al.Review of photovoltaic power forecasting[J].Solar energy,2016,136:78-111.
- [4] WANG H Z,LEI Z X,ZHANG X,et al.A review of deep learning for renewable energy forecasting[J].Energy conversion and management,2019,198:111799.
- [5] ALONSO-MONTESINOS J,BATLLES F J.Solar radiation forecasting in the short- and medium-term under all sky conditions[J].Energy,2015,83:387-393.
- [6] WANG H Z,LI G Q,WANG G B,et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J].Applied energy,2017,188:56-70.
- [7] YANG T G,LI B,XUN Q.LSTM-attention-embedding model-based day-ahead prediction of photovoltaic power output using Bayesian optimization[J].IEEE access,2019,7:171471-171484.
- [8] WANG H Z,WANG G B,LI G Q,et al.Deep belief network based deterministic and probabilistic wind speed forecasting approach[J].Applied energy,2016,182:80-93.
- [9] 蒋建东,余沣,董存,等.基于PSO与ELM组合算法的短期光伏发电功率预测模型[J].郑州大学学报(理学版),2019,51(3):120-126.JIANG J D,YU F,DONG C,et al.A short-term photovoltaic power forecasting model based on PSO and ELM combined algorithm[J].Journal of Zhengzhou university (natural science edition),2019,51(3):120-126.
- [10] 徐华,刘红琳.一种基于神经网络的时序建模预测方法[J].郑州大学学报(自然科学版),1998,30(2):23-26,39.XU H,LIU H L.A time series prediction and system modeling method based neural network[J].Journal of zhengzhuou university (natural science edition),1998,30(2):23-26,39.
- [11] SRIVASTAVA S,LESSMANN S.A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data[J].Solar energy,2018,162:232-247.
- [12] HUANG C J,KUO P H.Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting[J].IEEE access,2019,7:74822-74834.
- [13] LIU J,FANG W L,ZHANG X D,et al.An improved photovoltaic power forecasting model with the assistance of aerosol index data[J].IEEE transactions on sustainable energy,2015,6(2):434-442.
- [14] CHEN C S,DUAN S X,CAI T,et al.Online 24-h solar power forecasting based on weather type classification using artificial neural network[J].Solar energy,2011,85(11):2856-2870.
- [15] MELLIT A,MASSI PAVAN A,LUGHI V.Short-term forecasting of power production in a large-scale photovoltaic plant[J].Solar energy,2014,105:401-413.
- [16] ABDEL-NASSER M,MAHMOUD K.Accurate photovoltaic power forecasting models using deep LSTM-RNN[J].Neural computing and applications,2019,31(7):2727-2740.
- [17] 李畸勇,班斓.基于长短记忆神经网络的短期光伏发电预测技术研究[J].华北电力大学学报(自然科学版),2020,47(4):46-52.LI J Y,BAN L.Research on short-term photovoltaic power forecasting technology based on LSTM[J].Journal of North China electric power university (natural science edition),2020,47(4):46-52.
- [18] SHAO X R,SOO KIM C,GEUN KIM D.Accurate multi-scale feature fusion CNN for time series classification in smart factory[J].Computers,materials & continua,2020,65(1):543-561.