基于多尺度方法的1∶3共振双Hopf分岔分析Analysis of 1∶3 Resonant Double Hopf Bifurcation by Using the Method of Multiple Scales
王万永,陈丽娟,郭静
摘要(Abstract):
利用改进的多尺度方法对一个电路振子模型1∶3共振附近的动力学行为进行了研究.应用该方法得到了系统的复振幅方程,进而得到一个振幅与相位解耦的三维实振幅系统,通过分析实振幅方程的平衡点个数及其稳定性,将系统共振点附近的动力学行为进行分类,发现了双稳态等动力学现象,数值模拟验证了理论结果的正确性.
关键词(KeyWords): 电路振子;1∶3共振;多尺度方法;分岔
基金项目(Foundation): 国家自然科学基金资助项目(11302072);; 河南省科技厅资助项目(112300410194);; 河南教育厅资助项目(12B120004);; 郑州市科技局资助项目(20141391)
作者(Author): 王万永,陈丽娟,郭静
DOI: 10.13705/j.issn.1671-6841.2016053
参考文献(References):
- [1]LACARBONARA W,REGA G,NAYFEH A H.Resonant non-linear normal modes.Part I:analytical treatment for structural onedimensional systems[J].Int J Non-linear Mech,2003,38(6):851-872.
- [2]LEE C L,PERKINS N C.Nonlinear oscillations of suspended cables containing a two-to-one internal resonance[J].Nonlinear Dyn,1992,3(6):465-490.
- [3]王万永,陈丽娟.非线性时滞反馈对共振附近动力学行为的影响[J].信阳师范学院学报(自然科学版),2014,27(1):15-18.
- [4]JI J C,ZHANG N.Design of a nonlinear vibration absorber using three-to-one internal resonances[J].Mech Syst Signal Processing,2014,42(1/2):236-246.
- [5]LI L,LI Y H,LIU Q K,et al.Flap wise non-linear dynamics of wind turbine blades with both external and internal resonances[J].Int J Non-Linear Mech,2014,61(1):1-14.
- [6]LUONGO A,DI EGIDIO A,PAOLONE A.On the proper form of the amplitude modulation equations for resonant systems[J].Nonlinear Dyn,2002,27(3):237-254.
- [7]REVEL G,ALONSO D M,MOIOLA J L.Numerical semi-global analysis of a 1∶2 resonant Hopf-Hopf bifurcation[J].Physica D-nonlinear phenomena,2012,247(1):40-53.
- [8]徐兴磊,李红.压缩真空态的激发态下介观串并联RLC电路的量子涨落[J].郑州大学学报(理学版),2007,39(1):67-70.
- [9]方天申,董学义.LC串联电路非共振固有振荡与谐波共振的区别[J].信阳师范学院学报(自然科学版),2007,20(4):429-431.
- [10]CHUA L O,WU C W,HUANG A,et al.A universal circuit for studying and generating chaos-Ⅱ:Strange attractors[J].IEEE T Circuits Sys I,1993,40(10):745-761.
- [11]张晓芳,陈章耀,毕勤胜.非线性电路系统动力学的研究进展及展望[J].电路与系统学报,2012,17(5):124-129.
- [12]苏利捷,魏兆博,杨广德.单相逆变器共模电磁干扰特性研究[J].郑州大学学报(理学版),2014,46(4):57-62.
- [13]LUONGO A,PAOLONE A,DI EGIDIO A.Multiple timescales analysis for 1∶2 and 1∶3 resonant Hopf bifurcations[J].Nonlinear dynamics,2003,34(3/4):269-291.