融合LDA主题模型和支持向量机的商品个性化推荐方法Commodity Personalized Recommendation Method Integrating LDA Topic Model and Support Vector Machine
穆晓霞;董星辉;柴旭清;李钧涛;
摘要(Abstract):
针对网络商品评论数据不能有效引导买方做出合理选择的问题,提出一种融合LDA主题模型和支持向量机的商品个性化推荐方法。首先爬取不同类型商品的用户评论数据并对其进行预处理;其次建立基于LDA的主题模型并对其特点进行量化;最后利用支持向量机实现商品个性化推荐。以智能手机商品为例进行实验分析,结果表明,所提方法能获得98%以上的分类精度。
关键词(KeyWords): LDA主题模型;支持向量机;粒子群优化;个性化推荐
基金项目(Foundation): 国家自然科学基金项目(61203293,31700858);; 河南省科技攻关项目(212102210140)
作者(Authors): 穆晓霞;董星辉;柴旭清;李钧涛;
DOI: 10.13705/j.issn.1671-6841.2021350
参考文献(References):
- [1] 中国互联网信息中心.中国互联网络发展状况统计报告[EB/OL].(2021-02-03)[2021-06-12].https://tech.ifeng.com/c/83WmyZf9lC9.China Internet Information Center.Statistical report on the development of Internet in China[EB/OL].(2021-02-03)[2021-06-12].https://tech.ifeng.com/c/83WmyZf9lC9.
- [2] 张敏.基于文本挖掘的电商评论情感分析 [J].产业与科技论坛,2020,19(2):63-64.ZHANG M.Emotion analysis of E-commerce comments based on text mining [J].Industrial & science tribune,2020,19(2):63-64.
- [3] 冯兴杰,曾云泽.基于评论个性化多层注意力的商品推荐算法[J].计算机应用与软件,2021,38(1):51-57.FENG X J,ZENG Y Z.Item recommendation algorithm based on review personalization and multilayer attention[J].Computer applications and software,2021,38(1):51-57.
- [4] 孙含笑.基于贝叶斯分类算法的用户评论数据挖掘系统设计[J].现代计算机,2021(4):56-59.SUN H X.Design of user comment data mining system based on Bayes classification algorithm[J].Modern computer,2021(4):56-59.
- [5] 张亮.基于LDA主题模型的标签推荐方法研究[J].现代情报,2016,36(2):53-56.ZHANG L.Research on tagging recommendation method based on LDA topic model[J].Journal of modern information,2016,36(2):53-56.
- [6] 刘干,林杰豪,翟雯熠.基于中心词和LDA的微博热点话题发现研究[J].情报杂志,2021,40(5):143-148,164.LIU G,LIN J H,ZHAI W Y.Research on hot topics discovery in weibo based on keywords and LDA[J].Journal of intelligence,2021,40(5):143-148,164.
- [7] 孙志滨.LDA模型的研究及其在推荐系统中的应用[D].杭州:浙江大学,2016.SUN Z B.Research on LDA model and its application in recommendation system[D].Hangzhou:Zhejiang University,2016.
- [8] 徐戈,王厚峰.自然语言处理中主题模型的发展[J].计算机学报,2011,34(8):1423-1436.XU G,WANG H F.The development of topic models in natural language processing[J].Chinese journal of computers,2011,34(8):1423-1436.
- [9] TEH Y W,JORDAN M I,BEAL M J,et al.Hierarchical Dirichlet processes[J].Journal of the American statistical association,2006,101(476):1566-1581.
- [10] GRIFFITHS T L,STEYVERS M.Finding scientific topics[J].Proceedings of the national academy of sciences of the United States of America,2004,101(S1):5228-5235.
- [11] 关鹏,王曰芬.科技情报分析中LDA主题模型最优主题数确定方法研究[J].现代图书情报技术,2016(9):42-50.GUAN P,WANG Y F.Identifying optimal topic numbers from sci-tech information with LDA model[J].New technology of library and information service,2016(9):42-50.
- [12] 吴庆洪,高晓东.稀疏表示和支持向量机相融合的非理想环境人脸识别[J].计算机科学,2020,47(6):121-125.WU Q H,GAO X D.Face recognition in non-ideal environment based on sparse representation and support vector machine[J].Computer science,2020,47(6):121-125.
- [13] 李钧涛,杨瑞峰,左红亮.统计机器学习研究[J].河南师范大学学报(自然科学版),2010,38(6):35-40.LI J T,YANG R F,ZUO H L.Statistical machine learning[J].Journal of Henan normal university (natural science edition),2010,38(6):35-40.
- [14] 王杰,程学新,彭金柱.一种基于粒子群算法优化的加权随机森林模型[J].郑州大学学报(理学版),2018,50(1):72-76.WANG J,CHENG X X,PENG J Z.A weighted random forest model based on particle swarm optimization[J].Journal of Zhengzhou university (natural science edition),2018,50(1):72-76.
- [15] 张效尉,王伟,秦东霞.基于集成学习的微博用户转发行为预测[J].河南师范大学学报(自然科学版),2018,46(2):111-116.ZHANG X W,WANG W,QIN D X.Predicting microblog user retweet behaviors based on ensemble learning[J].Journal of Henan normal university (natural science edition),2018,46(2):111-116.
- [16] 刘艳红,陈田田,张方方.基于改进粒子群算法的移动机器人路径规划[J].郑州大学学报(理学版),2020,52(1):114-119.LIU Y H,CHEN T T,ZHANG F F.Mobile robot path planning based on improved particle swarm optimization[J].Journal of Zhengzhou university (natural science edition),2020,52(1):114-119.
- [17] 纪广月.基于云计算和GA-BP神经网络的西江水质评价研究[J].河南师范大学学报(自然科学版),2020,48(3):34-40.JI G Y.Study on water quality evaluation of Xijiang river based on cloud computing and GA-BP neural network[J].Journal of Henan normal university (natural science edition),2020,48(3):34-40.