一族藕合的 Kd V方程及其广义双 Hamiltonian结构(英文)A Hierarchy of Coupled Korteweg-de Vries Equations and Their Generalized Bi-Hamiltonian Structures
李春霞
摘要(Abstract):
通过引进一个有三个位势的 4× 4矩阵谱问题 ,导出一族新的非线性演化方程 ,其中一个典型的方程是 Kd V方程 .此外 ,这族方程还具有广义双 Hamiltonian结构
关键词(KeyWords): Lenard算子对;孤子族;双Hamiltonian结构
基金项目(Foundation):
作者(Author): 李春霞
参考文献(References):
- [1] CaoC W,GengX G,LiY S,et al.ClassicalIntegrableSystemsGenerated throughNonlinearization ofEigenvalueProblems.NonlinearPhysics(ResearchReport inPhysics),Berlin:Springer,1990.68~78.
- [2] CaoC W.Nonlinearization of theLaxSystem for theAKNS Hierarchy.SciChina,1990,A33(5):528~536.
- [3] CaoC W,GengX G.Neumann andBargmann systemsassociated with the coupledKdV soliton hierarchy.JPhysA:MathGen,1990,23:4117~4125.
- [4] DuD L.New approach to generation of finite-dimensional integrable systems.Journal ofZhengzhouUniversity(NaturalScienceEdition),1997,29(1):1~7.
- [5] MaW X,GengX G.New completely integrableNeumann systems related to the perturbationKdV hierarchy.PhysLettB,2000,475:56~62.
- [6] ShiQ Y,ZhuS M.A finite-dimensional integrable system and theR-matrix method.JMathPhys,2000,41(4):2157~2166.
- [7] WuY T,GengX G.A finite-dimensional integrable system associated with the three-wave interaction equations.JMathPhys,1999,40:3409~3430.
- [8] WuY T,LiM R.The trace formula of a matrix differential operator with application of integrable system.PhysLettA,2001,288(3):196~206.
- [9] LiX M.A new finite-dimensional integrable system associated with the generalizedSchr dinger equation.ILNUOVO CIMENTO SECT B,2001,116(4):459~474.
- [10]TuG Z.The trace identity,a powerful tool for constructing theHamiltonain structure of integrable systems.JMathPhys,1989,30(2):330~338.
- [11]LiM R.Some trace formulas for the eigenvalue problem ofSchr dinger system.Journal ofPhysicalSociety ofJapan,1999,68(4):1107~1114.
- [12]WuY T,GengX G,HuX B,etal.A generalizedHirota-Satsuma coupledKorteweg-deVries equation andMiuratransformation.PhysLettA,1999,255:259~264.
- [13]ArnoldV I.MathematicalMethods inClassicalMechanics,Berlin:Springer,1978.