有序Banach空间中二阶时滞微分方程正周期解的存在性Existence of Positive Periodic Solution for Second Order Differential Equation with Delays in Ordered Banach Spaces
吕娜
摘要(Abstract):
研究了有序Banach空间E中二阶多时滞微分方程-u″(t)+a(t)u(t)=f(t,u(t-τ_1),…,u(t-τ_n)),t∈R,正ω-周期解的存在性,其中:a∈C(R)是正的ω-周期函数;f:R×Kn→K连续且f(t,v)关于t为ω-周期函数;v=(ν_1,ν_2,…,νn)∈K~n;K为正元锥;τ_i≥0,i=1,2,…n为常数.在较一般的非紧性测度条件与有序条件下,应用凝聚映射的不动点指数理论,获得了该问题正ω-周期解的存在性结果.
关键词(KeyWords): Banach空间;正周期解;时滞;凝聚映射
基金项目(Foundation):
作者(Author): 吕娜
DOI: 10.13705/j.issn.1671-6841.2016058
参考文献(References):
- [1]WENG P,JIANG D.Existence of positive solutions for boundary value problem of second-order FDE[J].Comput Math Appl,1999,37(10):1-9.
- [2]JIANG D,WEI J,ZHANG B.Positive periodic solutions of functional differential equations and population models[J].Electron J Diff Equa,2002,71:l-13.
- [3]GUO C,GUO Z.Existence of multiple periodic solutions for a class of second-order delay differential equations[J].Nonlinear Anal RWA,2009,10(5):3285-3297.
- [4]WU Y.Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter[J].Nonlinear Anal,2009,70(1):433-443.
- [5]YANG B,MA R,GAO C.Positive periodic solutions of delayed differential equations[J].Appl Math Comput,2011,218(218):4538-4545.
- [6]LI Y.Positive periodic solutions of second-order differential equations with delays[J].Abstract and Appl Anal,2012(2012):829783.
- [7]KANG S,CHENG S.Periodic solutions for second order periodic differential equations under scalable control[J].Appl Math Comput,2012,218(18):9138-9146.
- [8]LI Q,LI Y.On the existence of positive periodic solutions for second-order functional differential equations with multiple delays[J].Abstract and Appl Anal,2012(2012):929870.
- [9]李永祥,李俊杰.有序Banach空间二阶常微分方程的非平凡周期解[J].兰州大学学报(自然科学版),2010,46(5):79-88.
- [10]LI Y.Positive periodic solutions of first and second-coder ordinary differential equations[J].Chinese Ann Math(Ser B),2004,25(3):413-420.
- [11]郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,1985.
- [12]HEINZ H P.On the behaviour of measure of noncompactness with respect to differention and integration of vector-valued functions[J].Nonlinear Anal,1983,7(12):1351-1371.
- [13]李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1089-1094.
- [14]郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,2002.