多粒度广义L-模糊可变精度粗糙集Multi-granulation Generalized L-fuzzy Variable Precision Rough Set
薛占熬,袁艺林,辛现伟,司小朦
摘要(Abstract):
为了更有效地处理不精确性问题,将模糊变精度粗糙集与多粒度相结合,成为研究的热点.在不可交换的广义剩余格的基础上,定义了基于L-模糊近似空间的广义L-模糊可变精度粗糙集中的左下(右下)和左上(右上)近似算子.然后,结合多粒度,给出了基于不可交换的广义剩余格的多粒度L-模糊可变精度粗糙集及其近似算子,研讨了它们的一些性质.该研究在变精度粗糙集研究中具有一定的理论价值,提供了一种新方法,能更加精确地解决实际中的不精确性问题.
关键词(KeyWords): 多粒度;广义剩余格;L-模糊集;L-模糊近似空间;广义L-模糊可变精度粗糙集
基金项目(Foundation): 国家自然科学基金资助项目(61273018);; 河南省基础与前沿技术研究项目(132300410174);; 河南省教育厅项目(14A520082);; 新乡市重点科技攻关项目(ZG14020)
作者(Author): 薛占熬,袁艺林,辛现伟,司小朦
DOI: 10.13705/j.issn.1671-6841.2016095
参考文献(References):
- [1]PAWLAK Z.Rough set[J].International journal of computer&information sciences,1982,11(5):341-356.
- [2]朱永明.基于粗糙集理论的股市预测研究[J].郑州大学学报(理学版),2009,41(4):45-49.
- [3]ABU-DONIA H M.Multi knowledge based on two universal sets and its application[J].Knowledge-based system,2010,23(2):110-115.
- [4]胡静,曹先彬,王煦法.基于相容粗糙集的图形图像信息预检索[J].计算机辅助设计与图形学学报,2002,14(3):242-246.
- [5]LIU G L.Rough set theory based on two universal sets and its application[J].Knowledge-based system,2010,23(2):110-115.
- [6]DUBOIS D,PRADE H.Rough fuzzy sets and fuzzy rough sets[J].Internal journal of general system,1990,17(2):191-208.
- [7]RADZILNWSLA A M,KERRE E E.A comparative study of fuzzy rough sets[J].Fuzzy sets and system,2002,126(2):137-155.
- [8]GONG Z T,SUN B S,CHEN D G.Rough sets theory for the interval-valued fuzzy information systems[J].Information sciences,2008,178(13):2794-2815.
- [9]ZHANG H Y,ZHANG W X,WU W Z.On characterization of generalized interva L-valued fuzzy rough sets on two universities of discourse[J].International journal of approximation reasoning,2009,51(1):56-70.
- [10]HAO J,LI Q.The relationship between L-fuzzy rough set and L-topology[J].Fuzzy sets and system,2011,178(1):74-83.
- [11]LIU G L.Generalized rough sets over fuzzy lattices[J].Information sciences,2008,178(6):1651-1662.
- [12]MA Z M,HU B Q.Topological and lattices structures of L-fuzzy rough sets determined by lower and upper sets[J].Information sciences,2013,218(1):194-204.
- [13]WANG C Y,HU B Q.Fuzzy rough sets based on generalized residuated lattices[J].Information sciences,2013,248(21):31-49.
- [14]ZIARKO W.Variable precision rough set model[J].Journal of computer and system sciences,1993,46(1):39-59.
- [15]ZHAO S,TSANG E C C,CHEN D.The model of fuzzy variable precision rough sets[J].IEEE transaction on fuzzy system,2009,17(2):451-467.
- [16]ZHAO X R,HU B Q.Fuzzy variable precision rough sets based on residuated lattices[J].International journal of general system,2014,44(7):1-23.
- [17]BLOUNT K,TSINAKIS C.The structure of residuated lattices[J].International journal of algebra and computation,2011,13(4):437-461.
- [18]GEORGESCU G,POPESCUB A.Non-commutative fuzzy galois connections[J].Soft computing,2003,7(7):458-467.
- [19]GEORGESCU G,POPESCUB A.Non-commutative fuzzy structures and pairs of weak negations[J].Fuzzy sets and system,2004,143(1):129-155.
- [20]GOGUEN J A.L-fuzzy sets[J].Journal of mathematical analysis and applications,1966,18(1):145-174.
- [21]QIAN Y H,ZHANG H,SANG Y,et al.Multi-granulation decision-theoretic rough sets[J].International journal of approximate reasoning,2014,55(1):225-237.
- [22]RADZIKOWSLA A M,KERRE E E.Fuzzy rough sets based on residuated lattices[J].Transactions on rough setsⅡ,2004,3135:278-296.