具有飞沫和直接接触感染的传染病模型分析Analysis of an Epidemic Model through Droplet Infection and Direct Contact
武文江,贾建文
摘要(Abstract):
考虑由飞沫传染和直接接触引发的传染病,建立了具有非线性接触率和非线性治愈率的脉冲时滞SIRS传染病模型.定义了两个正数R1和R2,并且证明了当R1<1时,系统的无病周期解是全局吸引的,当R2>1时系统持久.最后利用数值模拟验证了主要结论.
关键词(KeyWords): 飞沫传染;脉冲接种;灭绝;持久
基金项目(Foundation): 山西省自然科学基金资助项目(2013011002-2)
作者(Author): 武文江,贾建文
DOI: 10.13705/j.issn.1671-6841.2016040
参考文献(References):
- [1]马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:北京科学出版社,2004.
- [2]SAMANTA G P,Ricardo Gómez Aíza.Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination[J].Int J Dynam Control,2015,3(3):1-13.
- [3]SUNITA G,KULDEEP N.Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate[J].Chaos solution fractals,2008,35(3):626-638.
- [4]GAO S J,CHEN L S,NIETO J J,et al.Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J].Vaccine,2006,24(35/36):6037-6045.
- [5]吴燕兰,黄文韬,吴岱芩.一类具有脉冲免疫的时滞SIRS传染病模型的全局分析[J].郑州大学学报(理学版),2015,47(3):43-48.
- [6]郑丽丽,王娟.一类具有非线性发生率的病毒动力学模型分析[J].信阳师范学院学报(自然科学版),2013,26(4):481-484.
- [7]RUANS,WANG W.Dynamical behavior of an epidemical models with a nonlinear incidence rates[J].Journal of differential equations,1987,25(4):359-380.
- [8]ZHOU L H,FAN M.Dynamic of a SIR epidemic model with limited medical resources revisited[J].Nonlinear analysis real world application,2012,13(1):312-324.
- [9]GAO S J,CHEN L S,TENG Z D.Pulse vaccination of an SEIR model with time delay[J].Nonlinear analysis real world application,2008,9(2):599-607.
- [10]KUANG Y.Delay differential equations:with applications in population dynamics[M].New York:Academic Press,1993.