Banach空间分数阶微分方程边值问题解的存在性Existence of Solutions for Boundary Value Problems of Fractional Differential Equation in Banach Spaces
梁秋燕
摘要(Abstract):
考虑Banach空间E中分数阶微分方程边值问题{-Dβ0+u(t)=f(t,u(t)),t∈Ju(0)=u(1)={θ解的存在性,其中1<β≤2为实数,J=[0,1],Dβ0+是标准的Riemann-Liouville导数,f:J×E→E连续.用新的非紧性测度估计技巧,在f满足比较一般的增长条件和非紧性测度条件下通过凝聚映射的不动点定理获得了该边值问题解的存在性.
关键词(KeyWords): 分数阶微分方程;凝聚映射;不动点定理;非紧性测度;边值问题
基金项目(Foundation): 国家自然科学基金资助项目,编号11261053;; 甘肃省自然科学基金资助项目,编号:1208RJZA129
作者(Author): 梁秋燕
参考文献(References):
- [1]Bai Zhanbin,LüHaishen.Positive solutions for boundary value problems of nonlinear fractional differential equation[J].JMath Anal Appl,2005,311(2):495-505.
- [2]Jiang Daqing,Yuan Chengjun.The positive properties of the Green function for Dirichlet-type boundary value problems of non-linear fractional differential equation and its application[J].Nonlinear Anal,2010,72(2):710-719.
- [3]Zhang Shuqin.Positive solutions for boundary-value problems of nonlinear fractional differential equations[J].Electronic J Dif-ferential Equations,2006,2006(36):1-12.
- [4]Zhang Shuqin,Su Xinwei.The existence of a solution for a fractional differential equation with nonlinear boundary conditionsconsidered using upper and lower solutions in reverse order[J].Comput Math Appl,2011,62(3):1269-1274.
- [5]Lin Legang,Liu Xiping,Fang Haiqin.Method of upper and lower solutions for fractional differential equations[J].Electronic JDifferential Equations,2012,2012(100):1-13.
- [6]Guo Dajun,Lakshmikantham V.Multiple solutions of two-point boundary value problems of ordinary differential equations in Ba-nach spaces[J].J Math Anal Appl,1988,129(1):211-222.
- [7]宋富民.Banach空间两点边值问题的解[J].数学年刊:A辑,1993,14(6):692-697.
- [8]李永祥,郭长辉.有序Banach空间非线性二阶边值问题的正解[J].兰州大学学报:自然科学版,2008,44(6):120-126.
- [9]李永祥,李俊杰.有序Banach空间二阶常微分方程的非平凡周期解[J].兰州大学学报:自然科学版,2010,46(5):79-88.
- [10]李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1089-1094.
- [11]余庆余.Banach空间中凝聚映射及其不动点[J].兰州大学学报:自然科学版,1979,15(3):1-5.
- [12]郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1989.
- [13]Heinz H P.On the behaviour of measure of noncompactness with respect to differenation and integration of vector-valued func-tions[J].Nonlinear Anal,1983,7(12):1351-1371.
- [14]李永祥,汪璇.有序Banach空间常微分方程的正周期解[J].西北师范大学学报:自然科学版,2002,38(1):1-5.