一种高光谱图像加权稀疏子空间聚类算法A Weighted Sparse Subspace Clustering Algorithm of Hyperspectral Images
樊娟;邓秀勤;火博丰;王卓薇;
摘要(Abstract):
稀疏子空间在基于单稀疏表示系数构建相似矩阵的过程中,并没有充分利用高光谱图像丰富的光谱和空间信息。提出了一种基于弗雷歇距离的加权稀疏子空间聚类算法(FSSC)。该方法充分考虑了高光谱图像丰富的光谱信息以及光谱连续性,利用弗雷歇距离度量像素点光谱曲线间的相似度,并基于稀疏表示矩阵和相似度矩阵建立光谱加权稀疏子空间聚类模型,从而求解更真实的亲和力矩阵,以获得更高的地物分割精度。在两个经典的高光谱图像数据集上的实验结果表明了FSSC算法的有效性。
关键词(KeyWords): 高光谱图像;稀疏子空间聚类;亲和力矩阵;弗雷歇距离
基金项目(Foundation): 广东省科技计划项目(2021A1414030004);; 广东省重点研发计划项目(2019B010109001);; 高分辨率对地观测重大专项省域产业化应用项目(83-Y40G33-9001-18/20);; 广东省信息物理融合系统重点实验室项目(2020B1212060069)
作者(Authors): 樊娟;邓秀勤;火博丰;王卓薇;
DOI: 10.13705/j.issn.1671-6841.2021318
参考文献(References):
- [1] VINCENT F,BESSON O,MATTEOLI S.Anomaly detection for replacement model in hyperspectral imaging[J].Signal processing,2021,185:108079.
- [2] 李宁阳,王兆晖.基于近似后验信息的高光谱海上舰船目标检测[J].郑州大学学报(理学版),2021,53(1):54-60.LI N Y,WANG Z H.Hyperspectral sea fleet detection based on approximate posterior information[J].Journal of Zhengzhou university (natural science edition),2021,53(1):54-60.
- [3] LU B,DAO P,LIU J G,et al.Recent advances of hyperspectral imaging technology and applications in agriculture[J].Remote sensing,2020,12(16):2659.
- [4] ZHAO D,LIU S Y,YANG X F,et al.Research on camouflage recognition in simulated operational environment based on hyperspectral imaging technology[J].Journal of spectroscopy,2021,2021:1-9.
- [5] LIU Y W,PU H B,SUN D W.Hyperspectral imaging technique for evaluating food quality and safety during various processes:a review of recent applications[J].Trends in food science & technology,2017,69:25-35.
- [6] 李翠,冯冬青.基于改进K-均值聚类的图像分割算法研究[J].郑州大学学报(理学版),2011,43(1):109-113.LI C,FENG D Q.Research of K-means clustering algorithm for images based on weighted euclidean distance[J].Journal of Zhengzhou university (natural science edition),2011,43(1):109-113.
- [7] JIA S,ZHAO Q,WANG L,et al.Random projection based bias-corrected fuzzy C-means algorithm for hyperspectral remote sensing image segmentation[J].The international archives of the photogrammetry,remote sensing and spatial information sciences,2020,XLIII-B3-2000:435-439.
- [8] ZHAO Y,YUAN Y,WANG Q.Fast spectral clustering for unsupervised hyperspectral image classification[J].Remote sensing,2019,11(4):399-419.
- [9] HINOJOSA C A,ROJAS F,CASTILLO S,et al.Hyperspectral image segmentation using 3D regularized subspace clustering model[J].Journal of applied remote sensing,2021,15(1):016508.
- [10] 李为华,苏辉,郭华平.融合多特征和谱聚类集成的图像分割方法[J].信阳师范学院学报(自然科学版),2017,30(4):638-641.LI W H,SU H,GUO H P.Image segmentation Method Based on fusion of multiple features and spectral clustering[J].Journal of Xinyang normal university (natural science edition),2017,30(4):638-641.
- [11] ELHAMIFAR E,VIDAL R.Sparse subspace clustering:algorithm,theory,and applications[J].IEEE transactions on pattern analysis and machine intelligence,2013,35(11):2765-2781.
- [12] WEI L,JI F F,LIU H,et al.Subspace clustering via structured sparse relation representation[EB/OL].(2021-03-05)[2021-07-01].https://ieeexplore.ieee.org/document/9370168.
- [13] YIN M,XIE S L,WU Z Z,et al.Subspace clustering via learning an adaptive low-rank graph[J].IEEE transactions on image processing,2018,27(8):3716-3728.
- [14] LIU M K,LI Q,SUN Z N,et al.Face clustering utilizing scalable sparse subspace clustering and the image gradient feature descriptor[C]//Chinese Conference on Biometric Recognition.Cham:Springer International Publishing,2018:311-320.
- [15] HUANG W Q,HU Q F,WANG Y M,et al.Multibody nonrigid structure from motion segmentation based on sparse subspace clustering[J].International journal of digital multimedia broadcasting,2021,2021:1-12.
- [16] CHENG W L,CHOW T W S,ZHAO M B.Locality constrained-l(p) sparse subspace clustering for image clustering[J].Neurocomputing,2016,205:22-31.
- [17] YAN Q,DING Y,ZHANG J J,et al.A discriminated similarity matrix construction based on sparse subspace clustering algorithm for hyperspectral imagery[J].Cognitive systems research,2019,53:98-110.
- [18] ZHANG H Y,ZHAI H,ZHANG L P,et al.Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images[J].IEEE transactions on geoscience and remote sensing,2016,54(6):3672-3684.
- [19] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T.An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J].IEEE transactions on image processing,2011,20(3):681-695.
- [20] LUXBURG U.A tutorial on spectral clustering[J].Statistics and computing,2007,17(4):395-416.
- [21] SHARMA K P,POONIAA R C,SUNDA S.Map matching algorithm:curve simplification for Fréchet distance computing and precise navigation on road network using RTKLIB[J].Cluster computing,2019,22(6):13351-13359.
- [22] BANG Y,KIM J,YU K.An improved map-matching technique based on the Fréchet distance approach for pedestrian navigation services[J].Sensors,2016,16(10):1768.
- [23] 张兴兰,杨文金.基于k-means++的抗相似性攻击轨迹匿名算法[J].计算机科学与应用,2020,10(4):610-618.ZHANG X L,YANG W J.Trajectory anonymous algorithm based on k-means++ against similarity attack [J].Computer science and application,2020,10(4):610-618.
- [24] 孙伟伟,张殿发,杨刚,等.加权概率原型分析的高光谱影像波段选择[J].遥感学报,2018,22(1):110-118.SUN W W,ZHANG D F,YANG G,et al.Band selection for hyperspectral imagery based on weighted probabilistic archetypal analysis[J].Journal of remote sensing,2018,22(1):110-118.